PBW Bases for U,(gl(m|1))

Cailan Li
March 1st, 2023

1 The Classical Case

Let g be a lie algebra and let o € II. Let V' be locally finite g—module(action of eﬂav =0Vv eV for
some N). Then

Sa = exp(eq) exp(—fa) exp(eq)

gives an automorphism of V' as a v.s.
Lemma 1.1. (a) sa(Vy) =V, ()
(b) (Sa)qcm gives an action of By on V.
(c) $a(X -v) =54(X) - sa(v) for all X € U(g).
Proof. (¢) U(g) under the adjoint action is locally finite because on generators
e ad,,(e;) =0 eads, “i(e;) =01 #j e ad,, (b)) = aije; o ad,,(f;) = 6;;hi
and ad., acts by derivations on U(g). Thus s, gives an automorphism of U(g) as a vs. |

Remark. s, : U(g) — U(g) is an algebra homomorphism! Indeed one can compute

(c)

ads, (e;) (Sa(hj)) = sa(€i) - sa(hj) == sa(ade;(h))) = aijsa(ei)
and similarly with the other relations.

Now when we move to U,(g) we will have that U,(g) is no longer locally finite under the adjoint action

anymore. Indeed we have that
add (e;) = €] — ¢’} #0

Thus the formula for s, above will not give a map U,(g) — U,(g). However Lusztig was nevertheless
able to define maps T, satisfying the conditions in the lemma above.

1.1 The Braid Group Action

The idea here is to reverse the flow of logic, to start from (c¢) and work our way back up to the definition.
Let V be a f.d. Uy(slz)—module and v € V,,,. Then define

T(v) = Z (—1)bqb7‘wE(a)F(b)E(C)v

a,b,c>0;—a+b—c=m
Note T': Vgm — V-m (set a = ¢ = 0).

Remark. T'(v) is just the quantum version of the action of s, on v. Thus T is a bijection on V' (switch
the roles of E, F, etc).
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In general for v € V,, we have

T—>1T, FEF—>EFE,F, q—q¢, m-— <u,av>
Note that T4 : V), = V,,_(.av)a = Vi, (u) and thus why we chose m as above!.
Lemma 1.2. V f.d. Uy(sly)—modules V and v € V

T(Ev) = (-FK)T(v) T(Fv)=(-K'E)T(v) T(Kv)=K'T(v)

Proof. Suffice to check on L(q") by s.s. |
Lemma 1.3. Let (o, 3) =0. Then Eg - Ty (v) = To(Eg - v), similarily for Fg.
Proof. Eg commutes past everything in the formula for 75,. |

Lemma 1.4. V f.d. U,(g)—modules V andv €V, let r = — <5, av>, then

To(Egv) = (ad 0 (Ep) ) - Ta(v)

Theorem 1
Let w € Uy(g). If u annihilates all finite-dimensional U—modules, then u = 0.

Proposition 1.5. Let a be a simple root. Yu € U, ' € U s.t.
To(uv) = u'Ty(v) ()
for all f.d. U—modules V and v € V. Furthermore T, (u) := v’ is an algebra automorphism of U.

Proof. Existence: For uy,us € U suppose we found u}, us satisfying (*). Then = (u1+us) := u} +u)
and (ujug)’ := ujuj also satisfies (). Thus it suffices to show existence on generators of U,(g), but that
is exactly the content of the previous 3 lemmas.

Uniqueness: Suppose u’,u” both satisfy () for u. Then (u’ — v”)T,(v) = 0. But T, is bijective and
thus (v’ — ") annihilate all f.d. U,(g) modules and so by Theorem 1 u’ = u".

Auto: T, : Uy(g) — U,y(g) is an algebra homomorphism by construction above. Using Lemma 1.2 we
see that
To((—K3 ' Fo)v) = —KoTo(Fov) = EgTa(v)

and so T, (—K, 1Fa) = FE,. Similar manipulations occur using the lemmas above to show surjectivity
of T,. For injectivity, a trick similar to the proof of uniqueness works. |

Let T; = Ty, $i = Sq,. Explicitly T; : Uy(g) — Ug(g) will be

Ti(K,) = Ky, Ti(E) = -FK;, Ti(F)=-K'E
g
_ r—k k
Ty(Ej) = 3 (-1)rq *E" M B;EY
k=0

Theorem 1.6 (Lusztig). (T3),.cry satisfy the braid relations for By .

1<u, av> is also the length of the a string through V.
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1.2 PBW Bases for U,(g")

Fix a total ordering 81 < ... < By on ®* where M = |®'|. Then in the classical setting

{eaﬁi .egna; € ZZO}

gives a basis for U(g"). In the quantum setting we only have E, where a is a simple root. This is
where the operators T;, come in. First for any w € W, let w = s;, 84, ... s;, be a reduced expression for

w. Then set
Ty :=1T; ... T

This is well defined byTheorem 1.6 and Matsomoto’s theorem.

Lemma 1.7. Let w = s;,;, ... 5;, be a reduced expression. Then
61 = Oy, 62 = Si; (011'2), ﬁ:’) = (Sil Siz)(aig)v sy Bk‘ = (Sh Sig v - Sikfl)(aik)
are k distinct positive roots. In fact they are exactly the positive roots v s.t. w™ iy < 0.

Corollary 1.8. Let w = wq, then the above procedure gives all the positive roots from the simple roots.

N
Theorem 2 (Lusztig)
Fiz a reduced expression i= Siy - .. Siy, Jor wo. Define
E;/Bl L= E;Z
E{;@ 1=T,,(Ei,)
Ef:ﬁg 1 =T, Ty, (Eiy)
and set 1) e o)
L [ ple) pl)  plaan)| o >0
Bi {Eiiﬁl Eiiﬁz B @ € Z }
Then By is a (PBW) basis for Uy(g™)
- J

Warning. B; really depends on i. Take g = sl with IT = {a1, a2}. Then wy = d = s15281, wp = b=
S$95152. Now notice

Bs = {E1,E\E2 — ¢ 'E»Eq, B>} By = {E3, FbE1 — ¢ 'E\Ey, Fy }

2 The Super Case

In the classical case we can choose any set of simple roots II and U,(g) will have the same presentation.
In the sl3 example, we could take II = {€; — €2,€e2 — €3} or II' = {€; — €3,€3 — €2} and the presentation
for Uy(g) will be the same. [Draw on matrices]

Now interpret II,II" as roots for gl(2|1). The corresponding Dynkin diagrams will be

D) =O—& D(I) = —)
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Section 2.1 Cailan Li The Super Case

As a result, we have that

Uy (gi(2[1)) = Cl@) (B1, B, ... /(E12E2 g+ ¢ YE BB + BB, E2,..)
U (al(2[1)) = C(@) (BL, Bas ) [ (B2, (B2, )

These two algebras are actually isomorphic but it’s not clear at the moment why. To remedy this we
will introduce algebras U, (Cr) = U,(gl(m|n)) for every Cartan matrix corresponding to a choice of
simple roots II.

Definition 2.1 (Super Cartan Matrices). Let g be a basic lie superalgebra and let 11 be a choice of
simple roots for g. For a; € 11, let h; = [eq,;, fa;]s- Define

Cn = (¢i5) = (ai(hy))
Remark. For gl(m|n), a;(h;) = (ai, a;),.

Definition 2.2 (Super Dynkin Diagram). Given a super Cartan Matriz Cyy, the Dynkin diagram D(II)
will be the same formula as always except we draw a dashed line between i and i if c¢;j > 0, i # j.

Example 1. For gl(3|1) we have

I {e1 —€2,€62 — €3,€3 — 04} {e1 —€2,€9 — 04,04 — €3}
2 =1 0 2 =10
Ch -1 2 -1 -1 0 1
0O -1 0 0 1 0
pan | O O RO - X

Remark. Let a be an odd isotropic root for gl(m|n). Then the odd reflection s, is actually equal to
5qa € W(gl,,4,). In particular the group generated by W (gl(m|n)) and odd reflections is Sy,+rn. There-
fore we have an action of Sy, 1, on the super Cartan matrices. Explicitly, given II = {ozll_[, ey ag o1

and Cyy, s,(Chp) = Csi(H) where s; = Sall € Sm+tn- Note that as II changes the definition of s; changes

as well.

For example, let II,II' be the LHS, RHS respectively above. Then s3(Cp) = C

553754(1_[) = CH/, and
51(Cn) = s2(Cn) = IL. In general, W (gl(m|n)) C W(gl,,,,,) does not change Cr.

Definition 2.3. Given C = Cry for gl(m|n), let Uy(C) be the Zg graded associative C(q) algebra with
generators Ecyi,chi,KéE% with parity p(Ec,) = p(Fc,i) = p(i) = p(au), p(Kci) = 0 satisfying the
relations (We drop C for convenience)

E?=0 ifcii =0 (1)

EiE; = (—1)POPOW) B E, ifigj (2)

E?E; + E;E? = (¢+ q ")E,EjE; ifi~jand c; #0 (3)

[2)E, E:ELE; = (— 1)P<k PO BB B B + (—1)PRPOP W B BB B ifi~ g~k and cjj =0 (4)
+ (-1)PWE;E,E;Ey, + (-1)PYE,E;ELE; and cij # cji

(5)
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2.1 The U,(gl(m|1)) Case

From now on only work with U,(gl(m|1)).

( Theorem 3 (Clark) )
Let C be a super Cartan matriz for Uy(gl(m|1)) and set D = s;(C). Then define T} : Uy(C) —
Uqs(D) as

—FpiKp, ifj=ti
T3 (Ecg) = § EpiEp; — (—)PPOPPUgPa B By if j ~i
Ep,; if g
We omit the definition for the other generators. Then T} is a Za—algebra isomorphism.
. J

Proof. We check some relations namely Eq. (1). Let Cj; = 0 so that E%’j =0
Case 1: i o¢ j We then have that D;; = 0 as well since s; only changes the nodes adjacent to it. Thus

T (Bc;)?=Ep; =0
Case 2: i ~ j. s;(a;) = —a; = pp(i) = pc(i) while since s;(a;) = a; + a4, we see that
pp(j) = pc(j) +pc(i) = 1+ pp(i) = i and j have different parity

In other words, the effect of s; on the Dynkin diagram locally looks like

Si
or (8)—(8)—) ( )—(g)
J i J i

We check the first case (so EJ2 = 0) and also assume D;; = 1 [Clark does D;; = —1] We compute

T7(Ec;)? =(EpiEp,; — 4Ep;Ep,)*
=E;F;E;E; — qF;E;E; — qE;E}E; + ¢° E;EE; E;
. (3) B;E?E; 2B, E?E;
Egg) i Z_ij _qE]EZQE]‘i_q J ”L_1.7:O
(g+q ) (¢+q7h)

|
Proposition 2.4 (Clark). The T} satisfy braid relations of type A between appropriate Uy(C), i.e.

if i o4 j, giwen a super Cartan matriz B, let C = s;(B),D = s;(C), then as maps Uy(B) — Uqy(D)
T7T; =T7T7, and similarly with @ ~ j.
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4 )
Theorem 4 (Clark)
Fiz 11 for gl(m|1) and let C = Cry. Fiz a reduced expression i= Siy - .- Sig Jor wo € Spm41. Define
Bl =s; - sit_l(ag) and let Cz, = sg—1- -+ 53, (C) (s0 C;; = C). Finally let
EZ,B{I C= EC,il
E'_i':ﬁg F= Tls1 (EC,ZQJ:Q)
E?:ﬁ{l =T ... ni,l(EC{’t,it)
and set
B = {E(g)E(B) B € 27 as < 2t (A1) = 1}
Then Bzy is a (PBW) basis for U (C).
\-

Remark. Because Ec. ;, € Uy(C7,) = Ug(si—1...5;,(C)) we see that

Tzsl LT (EC;’t7it) € UQ((Sil s Sit—l)(sit—l s 511)(0)) = UQ(C)

1t—1

The miracle is that it’s in fact in Uq+ (O).
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